Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lars Eriksson ${ }^{\mathbf{a} *}$ and Jiwei Hu ${ }^{\text {b }}$
${ }^{\text {a }}$ Division of Structural Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Jyväskylä, FIN-40 351 Jyväskylä, Finland

Correspondence e-mail: lerik@struc.su.se

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.035$
$w R$ factor $=0.044$
Data-to-parameter ratio $=17.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

4-Bromophenyl 2,4-dibromophenyl ether

The title compound, $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{Br}_{3} \mathrm{O}$, belongs to a group of flame retardants known as polybrominated diphenyl ethers (PBDE). Salient features of the packing of the title compound are infinite intermolecular $\mathrm{Br} \cdots \mathrm{Br}$ contact chains along the b direction.

Comment

An important group of flame retardants are the polybrominated diphenyl ethers (PBDE). There are a total of 209 different PBDE's. The modelling of the reactivity of different PBDE's is a task that requires accurate geometries of the molecular species. Geometric data from crystallographic measurements on brominated diphenyl ethers with hetero substituents other than bromine are rather limited (Örn et al., 1996; Eriksson et al., 1999; Mrse et al., 2000; Eriksson \& Hu, 2001, 2002a,b). Furthermore, a partial structure of bis(4bromophenyl) ether (Toussaint, 1946) has been published. In a search of the Cambridge Structural Database (Allen \& Kennard, 1993) for hetero substituents other than bromine, a larger set of structures for use as model compounds were found, but still only in the order of $10-15$ different structures.

(I)

The monobrominated ring (C1-C6) of the title compound, (I), is planar within 0.005 (3) \AA, with the O atom deviating by 0.018 (6) \AA from the ring plane and atom Br 1 residing within $0.005 \AA$ of the ring plane. The dibrominated ring (C7-C12) of (I) is planar within 0.010 (3) \AA, with the O atom deviating by 0.034 (5) \AA, atom Br2 deviating by 0.044 (4) \AA and atom Br 3 deviating by 0.040 (5) \AA from the ring plane. The molecular structure is shown in Fig. 1. The angle between the ring planes is $89.8(1)^{\circ}$.

The fact that Br1 does not deviate from the plane of the ring to which it is connected is supported by the observation that Br 1 is the bromine with the longest $\mathrm{Br} \cdots \mathrm{Br}$ contacts, and thus should be little affected by $\mathrm{Br} \cdots \mathrm{Br}$ intermolecular forces. No bromine on neighbouring molecules is closer than approximately $4.25 \AA$ to Br 1 . The only close contacts for Br 1 are to neighbouring aromatic ring systems of symmetry-related equivalents of the ($\mathrm{C} 7-\mathrm{C} 12$) ring; $\mathrm{Br} 1 \cdots \mathrm{C} 10\left(1-x,-\frac{1}{2}+y\right.$, $\left.\frac{1}{2}-z\right)=3.641(4) \AA$ and $\operatorname{Br} 1 \cdots \mathrm{C} 11\left(1-x,-\frac{1}{2}+y, \frac{1}{2}-z\right)=$ 3.633 (4) A. Furthermore, there are close contacts, and thus

Received 7 May 2002
Accepted 14 May 2002 Online 31 May 2002

Figure 1
One molecule of (I), with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are shown as small circles of arbitrary radii.
probably, interactions between symmetry-related equivalents of one of the rings (C1-C6) arranged in a herring-bone pattern (Desiraju, 1989). Atoms Br 2 and Br 3 are part of a network of short intermolecular $\mathrm{Br} \cdots \mathrm{Br}$ contacts along the b direction (Fig. 2). The two shortest unique intermolecular $\mathrm{Br} \cdots \mathrm{Br}$ contact distances are: $\operatorname{Br} 2 \cdots \operatorname{Br} 2\left(\frac{3}{2}-x, \frac{1}{2}+y, z\right)=3.717$ (1) \AA and $\mathrm{Br} 2 \cdots \mathrm{Br} 3\left(\frac{1}{2}+x, \frac{1}{2}-y, 1-z\right)=3.763$ (1) A .

Experimental

The synthesis of (I) was carried out by coupling of the diphenyliodonium salt with a bromophenylate (Beringer et al., 1959; Ziegler \& Marr, 1962; Hu, 1996, 1999). The title compound was recrystallized from methanol.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{Br}_{3} \mathrm{O}$	Mo $K \alpha$ radiation
$M_{r}=406.91$	Cell parameters from 1235
Orthorhombic, Pbca	reflections
$a=15.480(3) \AA$	$\theta=1.7-26.0^{\circ}$
$b=5.9692(9) \AA$	$\mu=9.34 \mathrm{~mm}^{-1}$
$c=27.962(5) \AA$	$T=293(2) \mathrm{K}$
$V=2583.7(8) \AA^{3}$	Irregular, colourless
$Z=8$	$0.16 \times 0.07 \times 0.06 \mathrm{~mm}$
$D_{x}=2.092 \mathrm{Mg} \mathrm{m}^{-3}$	

응․

Figure 2
Perspective view, along the b axis, of the packing of the molecules in the title compound. Note the close $\mathrm{Br} \cdots \mathrm{Br}$ contacts depicted as black dashed bonds.

Data collection

Stoe IPDS area-detector
diffractometer
φ scans
Absorption correction: numerical
(XRED; Stoe \& Cie, 1997)
$T_{\text {min }}=0.231, T_{\text {max }}=0.574$
36351 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.044$
$S=1.02$
2513 reflections
145 parameters

H -atom parameters constrained
2513 independent reflections
1335 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.103$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-19 \rightarrow 19$
$k=-7 \rightarrow 7$
$l=-34 \rightarrow 34$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.01 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.53 \mathrm{e}_{\mathrm{A}}{ }^{-3}$
$\Delta \rho_{\min }=-0.41 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Br} 1-\mathrm{C} 4$	$1.901(4)$	$\mathrm{O}-\mathrm{C} 7$	$1.380(5)$
$\mathrm{Br} 2-\mathrm{C} 8$	$1.889(4)$	$\mathrm{O}-\mathrm{C} 1$	$1.385(4)$
$\mathrm{Br} 3-\mathrm{C} 10$	$1.889(4)$		
$\mathrm{C} 7-\mathrm{O}-\mathrm{C} 1$	$117.9(3)$	$\mathrm{C} 12-\mathrm{C} 7-\mathrm{O}$	$119.3(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$119.8(4)$	$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 8$	$119.0(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{O}$	$124.9(4)$	$\mathrm{O}-\mathrm{C} 7-\mathrm{C} 8$	$121.5(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{O}$	$115.3(4)$		
$\mathrm{C} 7-\mathrm{O}-\mathrm{C} 1-\mathrm{C} 2$	$8.5(6)$	$\mathrm{C} 1-\mathrm{O}-\mathrm{C} 7-\mathrm{C} 12$	$92.7(5)$
$\mathrm{C} 7-\mathrm{O}-\mathrm{C} 1-\mathrm{C} 6$	$-172.7(4)$	$\mathrm{C} 1-\mathrm{O}-\mathrm{C} 7-\mathrm{C} 8$	$-91.2(5)$

Two data sets were recorded with the Stoe IPDS system, with different settings of the crystal. The data sets were brought to a common scale by use of batch scale factors (BASF) determined with SHELXL97, and were merged. The high internal R value is a consequence of the large number of weak reflections. The internal R value calculated from reflections with $I \geq 2 \sigma(I)$ is 0.041 .

Data collection: EXPOSE in IPDS (Stoe, 1997); cell refinement: $C E L L$ in IPDS; data reduction: INTEGRATE in IPDS and $X-R E D$ (Stoe, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996).

This work was supported by a grant from the Swedish Natural Science Research Council.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
Bergerhoff, G. (1996). DIAMOND. Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
Beringer, F. M., Falk, R. A., Karniol, M., Lillien, G., Masullo, M., Mausner, M. \& Sommer, E. (1959). J. Am. Chem. Soc. 81, 342-351.
Desiraju, G. R. (1989). Crystal Engineering, The Design of Organic Solids, Material Science Monographs 54. Amsterdam: Elsevier.
Eriksson, J., Eriksson, L. \& Jakobsson, E. (1999). Acta Cryst. C55, 2169-2171.
Eriksson, L. \& Hu, J.-W. (2001). Acta Cryst. E57, o930-o932.
Eriksson, J., Eriksson, L. \& Hu. J.-W. (2002a). Acta Cryst. E58, o263-o265.
Eriksson, J., Eriksson, L. \& Hu. J.-W. (2002b). Acta Cryst. E58, o347-o349.
Hu, J. (1996). Licenciate Thesis, Department of Environmental Chemistry, Stockholm University, Sweden.
Hu, J. (1999). Doctorate Thesis, Department of Chemistry, Research Report No. 73, University of Jyväskylä, Jyväskylä, Finland.
Mrse, A. A., Watkins, S. F. \& Fronczek, F. R. (2000). Acta Cryst. C56, e576e577.

organic papers

Örn, U., Eriksson, L., Jakobsson, E. \& Bergman, Å. (1996). Acta Chem. Scand. 50, 802-807.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Stoe \& Cie (1997). IPDS (Version 2.87) and X-RED (Version 1.09). Stoe \& Cie GmbH, Darmstadt, Germany.
Toussaint, J. (1946). Bull. Soc. R. Sci. Liège, 15, 86-93.
Ziegler, H. \& Marr, C. (1962). J. Org. Chem. 27, 3335-3336.

